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ABSTRACT 

Experimental data available for the thermophysical properties of stainless steels 
have been searched, compiled, critically evaluated, analyzed, and correlated. 
Particular attention was given to material characteristics such as alloy composition, 
microstructure, and conditioning treatments. Thermal conductivity and electrical 
resistivity at low temperatures, and in some cases above room temperature, are 
comparatively more sensitive to these material differences. 

Properties for which data evaluation has been done include thermal 
conductivity, heat capacity, thermal linear expansion, thermal diffusivity, 
thermoradiative properties, electrical resistivity, and magnetic susceptibility, and, in 
a few cases, thermoelectric power, viscosity, and optical constants. Generally, 
suffkient data are available for the generation of evaluated data (recommended 
values) for elevated temperatures, and in many cases for low temperatures also. 

Stainless steels covered include the more common austenitic, ferritic, 
martensitic, and precipitation-hardened types. In all, more than 40 stainless steels 
are included in this effort. 

INTRODUCTION 

Stainless steels are a particularly interesting class of materials, Not only is 
there an extensive application base, but also applications have required thorough 
investigations of the behavior of, among other factors, the thermophysical 
properties. Over a period of time a variety of stainless steels have been produced 
by varying composition and conditioning treatment to achieve desired ends. 
Further, since these steels have found application in temperature environments 
extending from the cryogenic region to high temperatures, we would expect to learn 
much about property behavior by examining effects of these parameters. 

The objectives of the present investigation are to critically review the literature 
for experimental data on thermophysical properties of stainless steels, to identify the 

0040-6031/93/$06.00 0 1993 Elsevier Science Publishers B.V. All rights reserved 



effects upon property behavior that have been shown to be due to temperature and 
material composition and conditioning, and to generate recommended values 
consistent with limitations of the available data and information. A comprehensive 
and critical literature review of thermophysical properties of stainless steels has 
been underway for a number of years at CINDAS. An early set of data 
compilations for thermal properties (Touloukian et al. (1970-1975) was followed by 
data analysis and evaluation efforts directed at specific properties and steels 
(Chu and Ho (1978), Desai et al. (1979), Bogaard (1985)). Taken together, these 
efforts have resulted in a significant amount of information and experimental data 
being compiled, analyzed, and critically evaluated (Ho (1991)). The present effort 
is representative of a broadly scoped activity to critically evaluate available 
thermophysical property data for all stainless steels. The thermophysical properties 
include thermal (thermal conductivity, specific heat, thermal linear expansion, and 
thermal diffusivity), thermoradiative (hemispherical total emittance, normal total 
emittance, normal spectral emittance, and normal spectral reflectance), electrical 
(electrical and thermoelectric power), optical constants, magnetic susceptibility, and 
viscosity. Specifically, results are presented for eight stainless steels and seven 
properties, which show the variety of behavior that may be observed for these 
materials. 

The stainless steels for which property data were critically evaluated fall under 
the broad headings of austenitic, ferritic, martensitic, and precipitation-hardened 
types. Chemical compositions (SAE/ASTM (1975)) for the eight representative 
stainless steels are given in the accompanying Table. 

TABLE 1 

Chemical Compositions of Selected Stainless Steels 

Cr Ni 

rwte range Others 

Austenitic 
?6 0.08 0.08 2.00 2.00 1.00 1.00 0.045 0.045 0.030 0.030 18.0-20.0 16.0-18.0 10.0-14.0 8.0-10.5 - 

321 0.08 2.00 1.00 0.045 0.030 17.0-19.0 9.0-12.0 b” 
347 0.08 2.00 1.00 0.045 0.030 17.0-19.0 9.0-13.0 
660 0.08 2.00 1.00 0.040 0.030 13.5-16.0 24.0-27.0 : 

Ferritic 
430 0.12 1.00 1.00 0.040 0.030 16.0-18.0 - 

h!kXtUlSitiC 

410 0.15 1.00 1.00 0.040 0.030 11.5-13.5 - 

Precipitation-Hardened 
631 0.09 1.00 1.00 0.040 0.040 16.0-18.0 6.50-7.75 e 

a MO 2.0-3.0 
b Ti 5xCmin 
c Nb 1oxcmin 
d Al 0.35; B 0.001-0.010; MO 1.0-1.5; Ti 1.90-2.35; V 0.10-0.50 
e Al 0.75-1.50 
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DISCUSSION 

The thermophysical properties for a number of stainless steels are discussed in 
this section. Specific properties and stainless steels were selected to give a 
representative presentation of the overall results. Comments will necessarily be 
qualitative only due to limitation of space. 

The thermal conductivity of three stainless steels is shown in Figures 1, 2, and 
3. All data for AISI 321 austenitic stainless steel (Figure 1) were reported for 
solution-treated material. Effects due to conditioning (material structure) are 
observed for AISI 410 martensitic and 631 precipitation-hardened stainless steel in 
Figures 2 and 3, respectively. Data analysis was carried out to examine the 
temperature behavior of lattice thermal conductivity, and correlations of thermal 
conductivity and electrical resistivity proved helpful in sorting out effects due to 
heat treatments. Uncertainty estimates for the recommended values depend upon 
factors such as amount and quality of data and the reproducibility of the data for 
particular conditioning treatments. The estimates typically range from -t /- 5% to 
-+I- 15%. 

Specific heat of austenitic stainless steels, AISI 304 and 316, is shown in 
Figures 4 and 5 respectively. A problem encountered in evaluating data for some 
steels (not these two) is of ensuring that the true specific heat is indeed being 
observed. What is of interest for these two stainless steels, however, is that the 
specific heat of AISI 304 is about 8% larger at room temperature, presumably due 
to the molybdenum content of AISI 316 steel, and is an indication of the sensitivity 
of this property to composition differences. The uncertainties estimated for specific 
heat of stainless steels are generally +/- 5 % . 

Thermal linear expansion for AISI 316 austenitic and AISI 430 ferritic stainless 
steels are shown in Figures 6 and 7, respectively. Data reported from direct 
measurements of the temperature coefficient are also shown. Clearly, the thermal 
expansion for the austenitic steel is significantly larger than for the ferritic steel. 
The uncertainties in the recommended values are estimated to be within +/- 5% for 
thermal expansion and +/- 10% for the temperature coefficient when data scatter is 
comparatively small as in Figure 6, or +/- 10% and +/- 15%, respectively for the 
case of more widely scattered data in Figure 7. 

Thermal diffusivity of AISI 304 stainless steel is shown in Figure 8. The 
observation that several of the data sets shown are atypically small in value has not 
been explained. The uncertainty estimated for the values is about + /- 5 % . 

The thermoradiative properties for AISI 321 and 347 austenitic stainless steels 
are shown in Figures 9 and 10, respectively. The surface sensitivity for the normal 
total emittance in Figure 9 and normal spectral emittance in Figure 10 is much in 
evidence. The diffkulty with data evaluation in the present case is how to make 
comparisons among data sets when quantitative surface characterization is 
unavailable since the appropriate techniques have not been developed. About all 
that can justifiably be done is to indicate where the limits are, within the existing 
data, highly polished surfaces on the one hand and heavily oxidized for surfaces on 
the other. 

The electrical resistivity of AISI 316 austenitic AISI 631 precipitation-hardened, 
and AISI 660 austenitic stainless steels are shown in Figures 11, 12, and 13, 
respectively. The data scatter observed in Figures 11 and 13 and amounting to 
upwards of +/- 6% is due to material variability for stainless steels having 
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Figure 1. Thermal Conductivity of AISI 321 Stainless Steel. 
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Figure 2. Thermal Conductivity of AISI 410 Stainless Steel. 
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nominally similar heat treatments. Further, effects of aging on the electrical 
resistivity of AISI 631 precipitation-hardened and AISI 660 austenitic stainless steels 
in Figures 12 and 13, respectively, is clearly evident. The effects are only sketchily 
indicated in Figure 12, but are well-established in Figure 13. Uncertainties in the 
electrical resistivity varies from +/- 2 to 3 A for well established values to +/- 5% 
to less well-documented situations. 

The magnetic susceptibility of AISI 304 stainless steel is shown in Figure 14. 
This figure is included to give an indication of the complex magnetic behavior 
observed at low magnetic field when this material is cooled to low temperatures. 
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